Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787492

ABSTRACT

Isavuconazole is a broad-spectrum antifungal drug used for the treatment of serious infections caused by invasive aspergillosis and mucormycosis in adults. With the continuous use of this drug, its safety and environmental impact have received increasing attention. However, information on the adverse effects of the drug is very limited. Fish is a particularly important model for assessing environmental risks. In this study, the aquatic vertebrate zebrafish was used as a model to study the toxic effects and mechanisms of isavuconazole. We exposed zebrafish embryos to 0.25, 0.5, and 1 mg/L of isavuconazole 6 h after fertilization. The results showed that at 72 hpf, isavuconazole exposure reduced heart rate, body length, and survival of zebrafish embryos compared to controls. Secondly, when isavuconazole reached a certain dose level (0.25 mg/L), it caused morphological changes in the Tg(elavl3:eGFP) transgenic fish line, with the head shrunk, the body bent, the fluorescence intensity becoming weaker, the abnormal motor behaviour, etc. At the same time, exposure of zebrafish embryos to isavuconazole downregulated acetylcholinesterase (AchE) and adenosine triphosphate (ATPase) activities but upregulated oxidative stress, thereby disrupting neural development and gene expression of neurotransmitter pathways. In addition, astaxanthin partially rescued the neurodevelopmental defects of zebrafish embryos by downregulating oxidative stress. Thus, our study suggests that isavuconazole exposure may induce neurodevelopment defects and behavioural disturbances in larval zebrafish.

2.
Toxicol Appl Pharmacol ; 484: 116884, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442791

ABSTRACT

BACKGROUND: The global increase in the aging population has led to a higher incidence of osteoporosis among the elderly. OBJECTIVE: This study aimed to evaluate the protective properties of pinoresinol diglucoside (PDG), an active constituent of Eucommia ulmoides, against dexamethasone-induced osteoporosis and chondrodysplasia. METHODS: A zebrafish model of osteoporosis was established by exposing larval zebrafish to dexamethasone. The impact of PDG on bone mineralization was assessed through alizarin red and calcein staining. Alkaline phosphatase activity was quantified to evaluate osteoblast function. The influence of PDG on chondrogenesis was estimated using alcian blue staining. Fluorescence imaging and motor behavior analysis were employed to assess the protective effect of PDG on the structure and function of dexamethasone-induced skeletal teratogenesis. qPCR determined the expression of osteogenesis and Wnt signaling-related genes. Molecular docking was used to assess the potential interactions between PDG and Wnt receptors. RESULTS: PDG significantly increased bone mineralization and corrected spinal curvature and cartilage malformations in the zebrafish model. Furthermore, PDG enhanced swimming abilities compared to the model group. PDG mitigated dexamethasone-induced skeletal abnormalities in zebrafish by upregulating Wnt signaling, showing potential interaction with Wnt receptors FZD2 and FZD5. CONCLUSION: PDG mitigates dexamethasone-induced osteoporosis and chondrodysplasia by promoting bone formation and activating Wnt signaling.


Subject(s)
Lignans , Osteoporosis , Zebrafish , Humans , Animals , Aged , Molecular Docking Simulation , Osteogenesis , Dexamethasone/pharmacology , Osteoporosis/chemically induced , Osteoporosis/prevention & control , Receptors, Wnt , Cell Differentiation
3.
Toxicology ; 503: 153735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272385

ABSTRACT

Dimethyl fumarate (DMF) is an immunosuppressant commonly used to treat multiple sclerosis and other autoimmune diseases. Despite known side effects such as lymphopenia, the effect of DMF on cardiac development remains unclear. To assess this, we used zebrafish to evaluate the cardiac developmental toxicity of DMF. Our study showed that DMF reduced the survival rate of zebrafish embryos, with those exposed to 1, 1.3, and 1.6 mg/L exhibiting heart rate reduction, shortened body length, delayed yolk sac absorption, pericardial edema, increased distance from sinus venous to bulbus arteriosus, and separation of cardiomyocytes and endocardial cells at 72 hpf. Heart development-related genes showed disorder, apoptosis-related genes were up-regulated, and the oxidative stress response was down-regulated. Treatment with cysteamine ameliorated the heart development defects. Our study demonstrates that DMF induces cardiac developmental toxicity in zebrafish, possibly by down-regulating oxidative stress responses. This study provides a certain research basis for further study of DMF-induced cardiac developmental toxicity, and provides some experimental evidence for future clinical application and study of DMF.


Subject(s)
Heart Defects, Congenital , Zebrafish , Animals , Zebrafish/physiology , Dimethyl Fumarate/toxicity , Dimethyl Fumarate/metabolism , Down-Regulation , Embryo, Nonmammalian , Oxidative Stress , Cardiotoxicity/metabolism
4.
Ecotoxicol Environ Saf ; 270: 115911, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38181604

ABSTRACT

Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Chemical and Drug Induced Liver Injury , Hydantoins , Zebrafish , Animals , Humans , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Oxidative Stress , Chemical and Drug Induced Liver Injury/metabolism , Embryo, Nonmammalian/metabolism , Apoptosis
5.
Article in English | MEDLINE | ID: mdl-38218563

ABSTRACT

Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.


Subject(s)
Carbazoles , Cardiotoxicity , Indoles , Phenylurea Compounds , Piperidines , Pyridines , Quinolines , Zebrafish , Animals , Cardiotoxicity/metabolism , Embryo, Nonmammalian
6.
J Environ Sci (China) ; 139: 460-472, 2024 May.
Article in English | MEDLINE | ID: mdl-38105069

ABSTRACT

As an increasingly used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been widely detected in global water environments. However, little is known regarding its toxic effects on cardiovascular development. Here, zebrafish embryos were treated with egg water containing 0, 60, 120, or 240 mg/L HFPO-TA. Results showed that HFPO-TA treatment led to a significant reduction in both larval survival percentage and heart rate. Furthermore, HFPO-TA exposure caused severe pericardial edema and elongation of the sinus venous to bulbus arteriosus distance (SV-BA) in Tg (myl7: GFP) transgenic larvae, disrupting the expression of genes involved in heart development and thus causing abnormal heart looping. Obvious sprouting angiogenesis was observed in the 120 and 240 mg/L exposed Tg (fli: GFP) transgenic larvae. HFPO-TA treatment also impacted the mRNA levels of genes involved in the vascular endothelial growth factor (VEGF) pathway and embryonic vascular development. HFPO-TA exposure significantly decreased erythrocyte number in Tg (gata1: DsRed) transgenic embryos and influenced gene expression associated with the heme metabolism pathway. HFPO-TA also induced oxidative stress and altered the transcriptional levels of genes related to cell cycle and apoptosis, inhibiting cell proliferation while promoting apoptosis. Therefore, HFPO-TA exposure may induce abnormal development of the cardiovascular and hematopoietic systems in zebrafish embryos, suggesting it may not be a suitable or safe alternative for PFOA.


Subject(s)
Fluorocarbons , Zebrafish , Animals , Vascular Endothelial Growth Factor A/genetics , Fluorocarbons/toxicity , Water
7.
Chemosphere ; 344: 140283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775055

ABSTRACT

Benzophenone (BP) is found in many popular consumer products, such as cosmetics. BP potential toxicity to humans and aquatic organisms has emerged as an increased concern. In current study, we utilized a zebrafish model to assess BP-induced developmental cardiotoxicity. Following BP exposure, zebrafish embryos exhibited developmental toxicity, including increased mortality, reduced hatchability, delayed yolk sac absorption, and shortened body length. Besides, BP exposure induced cardiac defects in zebrafish embryos, comprising pericardial edema, reduced myocardial contractility and rhythm disturbances, and altered expression levels of cardiac developmental marker genes. Mechanistically, BP exposure disturbed the redox state and increased the level of apoptosis in zebrafish cardiomyocytes. Transcriptional expression levels of Wnt signaling genes, involving lef1, axin2, and ß-catenin, were upregulated after BP treatment. Inhibition of Wnt signaling with IWR-1 could rescue the BP-induced cardiotoxicity in zebrafish. In summary, BP exposure causes cardiotoxicity via upregulation of the Wnt signaling pathway in zebrafish embryos.


Subject(s)
Wnt Signaling Pathway , Zebrafish , Animals , Humans , Zebrafish/metabolism , Cardiotoxicity , Embryo, Nonmammalian/metabolism , Myocytes, Cardiac
8.
Environ Toxicol ; 38(11): 2679-2690, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37551640

ABSTRACT

Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, has shown potent anticancer activity in various clinical cancer treatments, but also different adverse reactions. Therefore, it is necessary to study its potential toxicity and working mechanism. We used zebrafish to investigate the effects of apatinib on the development of embryos. Zebrafish exposed to 2.5, 5, and 10 µM apatinib showed adverse effects such as decreased liver area, pericardial oedema, slow yolk absorption, bladder atrophy, and body length shortening. At the same time, it leads to abnormal liver tissue structure, liver function and related gene expression. Furthermore, after exposure to apatinib, oxidative stress levels were significantly elevated but liver developmental toxicity was effectively ameliorated with oxidative stress inhibitor treatment. Apatinib induces down-regulation of key target genes of Wnt signaling pathway in zebrafish, and it is found that Wnt activator can significantly rescue liver developmental defects. These results suggest that apatinib may induce zebrafish hepatotoxicity by inhibiting the Wnt signaling pathway and up-regulating oxidative stress, helping to strengthen our understanding of rational clinical application of apatinib.

9.
J Hazard Mater ; 459: 132175, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37517235

ABSTRACT

The increasing use of cosmetics has raised widespread concerns regarding their ingredients. Cysteamine hydrochloride (CSH) is a newly identified allergenic component in cosmetics, and therefore its potential toxicity needs further elucidation. Here, we investigated the in vivo toxicity of CSH during ocular development utilizing a zebrafish model. CSH exposure was linked to smaller eyes, increased vasculature of the fundus and decreased vessel diameter in zebrafish larvae. Moreover, CSH exposure accelerated the process of vascular sprouting and enhanced the proliferation of ocular vascular endothelial cells. Diminished behavior in response to visual stimuli and ocular structural damage in zebrafish larvae after CSH treatment were confirmed by analysis of the photo-visual motor response and pathological examination, respectively. Through transcriptional assays, transgenic fluorescence photography and molecular docking analysis, we determined that CSH inhibited Notch receptor transcription, leading to an aberrant proliferation of ocular vascular endothelial cells mediated by Vegf signaling activation. This process disrupted ocular homeostasis, and induced an inflammatory response with neutrophil accumulation, in addition to the generation of high levels of reactive oxygen species, which in turn promoted the occurrence of apoptotic cells in the eye and ultimately impaired ocular structure and visual function during zebrafish development.


Subject(s)
Cysteamine , Zebrafish , Animals , Cysteamine/toxicity , Endothelial Cells , Molecular Docking Simulation , Inflammation/chemically induced
10.
Fish Physiol Biochem ; 49(4): 737-750, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464180

ABSTRACT

The sphk1 gene plays a crucial role in cell growth and signal transduction. However, the developmental functions of the sphk1 gene during early vertebrate zebrafish embryo remain not completely understood. In this study, we constructed zebrafish sphk1 mutants through CRISPR/Cas9 to investigate its role in zebrafish embryonic development. Knockout of the sphk1 gene was found to cause abnormal development in zebrafish embryos, such as darkening and atrophy of the head, trunk deformities, pericardial edema, retarded yolk sac development, reduced heart rate, and premature death. The acetylcholinesterase activity was significantly increased after the knockout of sphk1, and some of the neurodevelopmental genes and neurotransmission system-related genes were expressed abnormally. The deletion of sphk1 led to abnormal expression of immune genes, as well as a significant decrease in the number of hematopoietic stem cells and neutrophils. The mRNA levels of cardiac development-related genes were significantly decreased. In addition, cell apoptosis increases in the sphk1 mutants, and the proliferation of head cells decreases. Therefore, our study has shown that the sphk1 is a key gene for zebrafish embryonic survival and regulation of organ development. It deepened our understanding of its physiological function. Our study lays the foundation for investigating the mechanism of the sphk1 gene in early zebrafish embryonic development.


Subject(s)
Mortality, Premature , Zebrafish , Animals , Zebrafish/genetics , Acetylcholinesterase , Embryo, Nonmammalian/abnormalities , Embryonic Development , Apoptosis/genetics , Gene Expression Regulation, Developmental
11.
Fish Shellfish Immunol ; 139: 108898, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301310

ABSTRACT

Sanguinarine (C20H14NO4+), a plant alkaloid and pesticide, works well a fungicidal and insecticidal applications. The prospect that sanguinarine may have potentially toxic effects on aquatic organisms has been brought to light by its use in agriculture. The first evaluation of the immunotoxic and behavioral effects of sanguinarine exposure on larval zebrafish was done in this work. Firstly, zebrafish embryos exposed to sanguinarine had shorter body length, larger yolk sacs, and slower heart rates. Secondly, the number of innate immune cells was significantly reduced. Thirdly, alterations in locomotor behavior were observed as exposure concentrations increased. Total distance travelled, travel time, and mean speed were all reduced. We also found significant changes in oxidative stress-related indicators and a significant increase in apoptosis in the embryos. Further studies revealed aberrant expression of some key genes in the TLR immune signaling pathway including CXCL-c1c, IL8, MYD88, and TLR4. At the same time, the expression of the pro-inflammatory cytokine IFN-γ was upregulated. To sum up, our results suggest that sanguinarine exposure may cause immunotoxicity and aberrant behavior in larval zebrafish.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Zebrafish , Insecticides/toxicity , Oxidative Stress , Benzophenanthridines/toxicity , Benzophenanthridines/metabolism , Embryo, Nonmammalian , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
12.
Fish Shellfish Immunol ; 138: 108849, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37268155

ABSTRACT

Pexidartinib, a macrophage colony-stimulating factor receptor (CSF-1R) inhibitor, is indicated for the treatment of tendon sheath giant cell tumor (TGCT). However, few studies on the toxicity mechanisms of pexidartinib for embryonic development. In this study, the effects of pexidartinib on embryonic development and immunotoxicity in zebrafish were investigated. Zebrafish embryos at 6 h post fertilization (6 hpf) were exposed to 0, 0.5, 1.0, and 1.5 µM concentrations of pexidartinib, respectively. The results showed that different concentrations of pexidartinib induced the shorter body, decreased heart rate, reduced number of immune cells and increase of apoptotic cells. In addition, we also detected the expression of Wnt signaling pathway and inflammation-related genes, and found that these genes expression were significantly upregulated after pexidartinib treatment. To test the effects of embryonic development and immunotoxicity due to hyperactivation of Wnt signaling after pexidartinib treatment, we used IWR-1, Wnt inhibitor, for rescue. Results show that IWR-1 could not only rescue developmental defects and immune cell number, but also downregulate the high expression of Wnt signaling pathway and inflammation-related caused by pexidartinib. Collectively, our results suggest that pexidartinib induces the developmental toxicity and immunotoxicity in zebrafish embryos through hyperactivation of Wnt signaling, providing a certain reference for the new mechanisms of pexidartinib function.


Subject(s)
Wnt Signaling Pathway , Zebrafish , Animals , Zebrafish/genetics , Aminopyridines/metabolism , Aminopyridines/pharmacology , Inflammation/metabolism , Embryo, Nonmammalian
13.
Toxicology ; 493: 153555, 2023 07.
Article in English | MEDLINE | ID: mdl-37236339

ABSTRACT

Cysteamine, a sulfhydryl compound, is an intermediate in the metabolism of coenzyme A to taurine in living organisms. However, the potential side effects of cysteamine such as hepatotoxicity in pediatric patients have been reported in some studies. To evaluate the impact of cysteamine on infants and children, larval zebrafish (a vertebrate model) were exposed to 0.18, 0.36 and 0.54 mM cysteamine from 72 hpf to 144 hpf. Alterations in general and pathological evaluation, biochemical parameters, cell proliferation, lipid metabolism factors, inflammatory factors and Wnt signaling pathway levels were examined. Increased liver area and lipid accumulation were observed in liver morphology, staining and histopathology in a dose-dependent manner with cysteamine exposure. In addition, the experimental cysteamine group exhibited higher alanine aminotransferase, aspartate aminotransferase, total triglyceride and total cholesterol levels than the control group. Meanwhile, the levels of lipogenesis-related factors ascended whereas lipid transport-related factors descended. Oxidative stress indicators such as reactive oxygen species, MDA and SOD were upregulated after cysteamine exposure. Afterwards, transcription assays revealed that biotinidase and Wnt pathway-related genes were upregulated in the exposed group, and inhibition of Wnt signaling partially rescued the abnormal liver development. The current study found that cysteamine-induced hepatotoxicity in larval zebrafish is due to inflammation and abnormal lipid metabolism, which is mediated by biotinidase (a potential pantetheinase isoenzyme) and Wnt signaling. This provides a perspective on the safety of cysteamine administration in children and identifies potential targets for protection against adverse reactions.


Subject(s)
Chemical and Drug Induced Liver Injury , Lipid Metabolism Disorders , Animals , Zebrafish/metabolism , Cysteamine/toxicity , Cysteamine/metabolism , Lipid Metabolism , Biotinidase/metabolism , Liver , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/pathology , Oxidative Stress , Triglycerides/metabolism , Chemical and Drug Induced Liver Injury/pathology
14.
J Appl Toxicol ; 43(7): 1073-1082, 2023 07.
Article in English | MEDLINE | ID: mdl-36755374

ABSTRACT

Roxadustat is a novel and effective small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PHI). However, little research has been done on its toxicity to vertebrate embryonic development. In this study, we used zebrafish to assess the effects of roxadustat on early embryonic development. Exposure to 14, 28, and 56 µM roxadustat resulted in abnormal embryonic development in zebrafish embryos, such as shortened body length and early liver developmental deficiency. Roxadustat exposure resulted in liver metabolic imbalance and abnormal liver tissue structure in adult zebrafish. In addition, roxadustat could up-regulate oxidative stress, and astaxanthin (AS) could partially rescue liver developmental defects by down-regulation of oxidative stress. After exposure to roxadustat, the Notch signaling is down-regulated, and the use of an activator of Notch signaling can partially rescue hepatotoxicity. Therefore, our research indicates that roxadustat may induce zebrafish hepatotoxicity by down-regulating Notch signaling. This study provides a reference for the clinical use of roxadustat.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Embryonic Development , Oxidative Stress , Chemical and Drug Induced Liver Injury/etiology
15.
Fish Shellfish Immunol ; 134: 108644, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36842639

ABSTRACT

Cyhalofop-butyl (CyB) is a highly effective herbicide and is widely used for weed control in paddy fields. Because CyB is easily residual in the aquatic environment, its potential harm to aquatic organisms has attracted much attention and has not been fully understood. In this study, we systematically explored the hepatotoxic and immunotoxic effects of CyB exposure in zebrafish embryos. Firstly, CyB induced a decrease in the survival rate of zebrafish and led to a series of developmental abnormalities. Meanwhile, CyB can significantly reduce the size of zebrafish liver tissue and the number of hepatocytes in a dose-dependent manner. Secondly, the number of macrophages and neutrophils significantly decreased but the antioxidant enzyme activities such as CAT and MDA were greatly elevated upon CyB exposure. Thirdly, RNA-Seq analysis identified 1, 402 differentially expressed genes (DEGs) including 621 up-regulated and 781 down-regulated in zebrafish embryos after CyB exposure. KEGG and GO functional analysis revealed that the metabolic pathways of drug metabolism-cytochrome P450, biosynthesis of antibiotics, and metabolism of xenobiotics, along with oxidation-reduction process, high-density lipoprotein particle and cholesterol transport activity were significantly enriched after CyB exposure. Besides, hierarchical clustering analysis suggested that the genes involved in lipid metabolism, oxidative stress and innate immunity were largely activated in CyB-exposed zebrafish. Moreover, CyB induced zebrafish liver injury and increased hepatocyte apoptosis, which increased the protein expression levels of Bax, TLR4, NF-kB p65 and STAT3 in zebrafish. Finally, specific inhibition of TLR signaling pathway by TLR4 knock-down could significantly reduce the expression of inflammatory cytokines induced by CyB exposure. Taken together, these informations demonstrated that CyB could induce the hepatotoxicity and immunotoxicity in zebrafish embryos, and the expression levels of many genes involved in lipid metabolism and immune inflammation were obtained by RNA-Seq analysis. This study provides valuable information for future elucidating the aquatic toxicity of herbicide in aquatic ecosystems.


Subject(s)
Chemical and Drug Induced Liver Injury , Herbicides , Water Pollutants, Chemical , Animals , Zebrafish , Toll-Like Receptor 4 , Ecosystem , Oxidative Stress , Antioxidants/metabolism , Herbicides/toxicity , Embryo, Nonmammalian , Water Pollutants, Chemical/toxicity
16.
Article in English | MEDLINE | ID: mdl-36720376

ABSTRACT

As a powerful immunosuppressant, cyclosporine A (CsA) is widely used clinically. However, it has been found to have many side effects including nephrotoxicity and neurotoxicity. Despite this, some patients cannot avoid using CsA during pregnancy and this can be detrimental to both the patient and the foetus. This study used zebrafish as a model animal to evaluate the hepatotoxic effects of CsA in zebrafish embryos. Zebrafish embryos cultured at 72 post-fertilization (hpf) were exposed to three concentrations of CsA at 2.5 mg/L, 5 mg/L, and 10 mg/L for 72 h. Liver developmental defects, smaller or missing swim bladder, slower heart rate, reduced body length, and delayed yolk sac absorption were observed. The level of oxidative stress (ROS) increased with the increase of CsA concentration. The indicators of related oxidative stress kinase activities including malondialdehyde (MDA), catalase (CAT) and SOD, all appeared to significantly increased. The use of astaxanthin (ATX) to inhibit oxidative stress was found to be useful for rescuing zebrafish hepatic development defects. Therefore, our results suggest that CsA induces zebrafish embryonic hepatic development defects by activating the oxidative stress. The study of CsA-induced hepatic development defects of zebrafish embryos is helpful for clinical evaluation of the safety of CsA and enables the search for new use without side effects.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Cyclosporine/toxicity , Larva , Oxidative Stress
17.
Neurotoxicology ; 93: 337-347, 2022 12.
Article in English | MEDLINE | ID: mdl-36341947

ABSTRACT

Propranolol hydrochloride is the first-line drug for the clinical treatment of hypertension, arrhythmia, and other diseases. However, with the increasing use of this drug, its safety and environmental health have received more and more attention. In this study, aquatic vertebrate zebrafish were used as a model to study the toxic effects and mechanisms of propranolol hydrochloride. It was revealed that zebrafish larvae exposed to propranolol hydrochloride showed aberrant head nerve development and locomotor disorders. Additionally, exposure to propranolol hydrochloride could induce oxidative stress, alter the activities of AChE and ATPase, and disrupt the expression of genes involved in neurodevelopment and neurotransmitter pathways. More interestingly, the expression of Parkinson's disease-related genes was altered in zebrafish treated with propranolol hydrochloride. We detected the expression of genes related to the Wnt signaling pathway and found that their expression appeared to be down-regulated. The phenotype of nerve developmental defects and locomotor disorders can be effectively rescued by astaxanthin and Wnt activators. Collectively, the results suggest that propranolol hydrochloride may induce neurotoxicity and abnormal movement behavior with PD-like symptoms in zebrafish larvae.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Larva , Embryo, Nonmammalian , Propranolol/toxicity , Propranolol/metabolism , Water Pollutants, Chemical/toxicity
18.
Fish Shellfish Immunol ; 131: 119-126, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36195270

ABSTRACT

Pyrazosulfuron-ethyl is one of the most widely used herbicides in agriculture and can be widely detected in aquatic ecosystems. However, its biosafety, including its potential toxic effects on aquatic organisms and its mechanism, is still poorly understood. As an ideal vertebrate model, zebrafish, the effect of pyrazosulfuron-ethyl on early embryonic development and immunotoxicity of zebrafish can be well evaluated. From 10 to 72 h post fertilization (hpf), zebrafish embryos were exposed to 1, 5, and 9 mg/L pyrazosulfuron-ethyl which led in a substantial reduction in survival, total length, and heart rate, as well as a range of behavioral impairments. In zebrafish larvae, the number of neutrophils and macrophages was considerably decreased and oxidative stress levels increased in a dose-dependent way after pyrazosulfuron-ethyl exposure. And the expression of immune-related genes, such as TLR-4, MyD88 and IL-1ß, were downregulated by pyrazosulfuron-ethyl exposure. Moreover, pyrazosulfuron-ethyl exposure also inhibited motor behavior. Notch signaling was upregulated after exposure to pyrazosulfuron-ethyl, while inhibition of Notch signaling pathway could rescue immunotoxicity. Therefore, our findings suggest that pyrazosulfuron-ethyl has the potential to induce immunotoxicity and neurobehavioral changes in zebrafish larvae.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/genetics , Embryo, Nonmammalian , Ecosystem , Pyrazoles/toxicity , Oxidative Stress , Larva , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
19.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291055

ABSTRACT

Shikonin is a naphthoquinone compound extracted from Chinese comfrey for treating cancer. However, there are few reports on its research on vertebrate tissue regeneration. Zebrafish is an ideal model for studying organ regeneration. In this study, we found that 3-dpf of zebrafish larvae exposed to shikonin at concentrations of 0.2, 0.3, and 0.4 mg/L showed increasingly inhibited regeneration of the tail fin. Immunohistochemical staining showed that shikonin exposure from 6 to 12 hpa increased the number of apoptotic cells in the caudal fin wound of larvae and decreased the number of proliferating cells. Shikonin exposure was found to up-regulate oxidative stress, increase ROS levels, and reduce neutrophil recruitment in the early stage of wound repair. Moreover, shikonin exposure caused disordered expression of fin regeneration blastemal-related genes. The use of astaxanthin to down-regulate oxidative stress was found to significantly reduce the inhibition of caudal fin regeneration. Mixed exposure of AMPK inhibitors or fullerenes (C60) with shikonin also showed the similar rescue effect. Collectively, our study showed that shikonin inhibited fin regeneration in zebrafish larvae by the upregulation of oxidative stress level and AMPK signaling pathway. This research provides valuable information on the mechanism of action of shikonin for its safe application.


Subject(s)
Fullerenes , Naphthoquinones , Animals , Zebrafish/genetics , Larva , Fullerenes/metabolism , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Naphthoquinones/pharmacology
20.
Front Pharmacol ; 13: 966710, 2022.
Article in English | MEDLINE | ID: mdl-36059963

ABSTRACT

Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...